Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Anna Kropidłowska, ${ }^{\text {a }}$ Ilona Turowska-Tyrk ${ }^{\text {b }}$ and Barbara Becker ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology,
11/12 G. Narutowicz St., 80-952-PL Gdańsk, Poland, and ${ }^{\mathbf{b}}$ Institute of Physical and Theoretical Chemistry, Chemical Faculty, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370-PL Wrocław, Poland

Correspondence e-mail:
bbecker@chem.pg.gda.pl

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.048$
$w R$ factor $=0.100$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(2,2'-Bipyridine)bis(tri-tert-butoxysilanethiolato$\kappa^{2} O, S$)cadmium(II)

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{SiS}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, the $\mathrm{Cd}^{\text {II }}$ atom has a distorted octahedral coordination formed by two N atoms of the bipyridine ligand and two pairs of S and O atoms from two S, O-chelating tri-tert-butoxysilanethiolate ligands. The O atoms occupy axial positions and the two halves of the molecule are related by a twofold axis which passes through the Cd atom.

Comment

Previously we described the preparation of a dimeric cadmium silanethiolate $\left[\mathrm{Cd}\left\{\mathrm{SSi}\left(\mathrm{OBu}^{t}\right)_{3}\right\}_{2}\right]_{2}$ and its reactions with $2,2^{\prime}$ bipyridine or 1,10-phenanthroline giving complexes of a formal $\left[\mathrm{Cd}(L)\left\{\mathrm{SSi}\left(\mathrm{OBu}^{t}\right)_{3}\right\}_{2}\right]$ stoichiometry, where $L=$ bipy (I) or phen (Wojnowski et al., 1992); however, structural work was not carried out. Subsequently, we obtained a related Zn complex, $\left[\mathrm{Zn}(\right.$ bipy $\left.)\left\{\mathrm{SSi}\left(\mathrm{OBu}^{t}\right)_{3}\right\}_{2}\right]$, (II), and found that Zn is in a distorted tetrahedral environment within a $\mathrm{ZnN}_{2} \mathrm{~S}_{2}$ core (Becker et al., 1996). Recently a related manganese(II)-based complex, $\left[\mathrm{Mn}(\right.$ bipy $\left.)\left\{\mathrm{SSi}\left(\mathrm{OBu}^{t}\right)_{3}\right\}_{2}\right]$, (III), was structurally characterized, showing Mn in a distorted octahedral environment with an $\mathrm{MnN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ core (Kropidłowska et al., 2006). A search of the Cambridge Structural Database (CSD; Version of 2006 with updates; Allen, 2002) revealed no Mn complexes with the same core and bipyridine (or phenanthroline) as a ligand. A similar search for cadmium produced only one example of a compound where the use of a potentially O, S chelating thiobenzoate ligand leads to the complex $[\mathrm{Cd}(\mathrm{bi}-$ py) $(\mathrm{SOCPh})_{2}$], (IV), with a $\mathrm{CdN}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ core (CSD refcode SAMDEQ; Zhang et al., 2004).

(I)

The structure of (I) is shown in Fig. 1, while selected geometric parameters are given in Table 1. The two halves of the molecule are related by a twofold axis which passes through atom Cd1. Compound (I) is isomorphous with the manganese(II) compound (III). In both complexes the sixcoordination results from the O, S-chelating ability of the tri-tert-butoxysilanethiolate ligand. This property manifests itself only in certain cases - for the stoichiometrically related zinc

Received 2 November 2006
Accepted 14 November 2006

Figure 1
The molecular structure and atom-numbering scheme for (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.]
complex (II) the metal is four-coordinate. In the absence of any significant electronic effects, it is the difference in covalent radii, $\mathrm{Cd}>\mathrm{Mn}>\mathrm{Zn}$, which may serve as a plausible explanation, especially if one takes into account the large steric hindrance imposed by the bulky tri-tert-butoxysilanethiolate ligand.

The chelation by the silanethiolate ligand in (I) results in distortions of the geometric parameters related to atoms O 1 , O 2 and O3 since the $\mathrm{Si} 1-\mathrm{O} 3$ bond is longer and the O3-Si1-S1 angle smaller than others. The octahedral coordination in (I) is distorted (Fig. 1) because of the three bite angles imposed by the three chelating ligands (Table 1). Nevertheless, the $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$ angle closely approaches 180°. The Si1S1 bond length is typical and close to that found in the manganese complex (III) [2.070 (1) Å]. A comparison of (I) with the thiobenzoate derivative (IV) shows the latter to be more distorted, particularly with respect to the $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angle of 132.7°. The $\mathrm{Cd}-\mathrm{S}, \mathrm{Cd}-\mathrm{N}$, and $\mathrm{Cd}-\mathrm{O}$ distances are also significantly different.

Experimental

Crystals of (I) suitable for X-ray measurements were obtained according to a previously described procedure (Wojnowski et al., 1992). The compound is very stable and may be stored for years without decomposition.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{SiS}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=827.59$
Monoclinic, $C 2 / c$
$a=16.9395$ (13) A
$b=9.6160$ (6) A
$c=26.841$ (2) \AA
$\beta=98.006(8)^{\circ}$
$V=4329.5(5) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.27 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.70 \mathrm{~mm}^{-1}} \\
& T=299(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.45 \times 0.24 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4-CCD diffractometer ω scans
Absorption correction: none
11165 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0144 P)^{2}\right. \\
& +20.759 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.47 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00058 \text { (7) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.410(3)$	$\mathrm{Si} 1-\mathrm{O} 2$	$1.620(3)$
$\mathrm{Cd} 1-\mathrm{S} 1$	$2.5224(11)$	$\mathrm{Si} 1-\mathrm{O} 1$	$1.622(3)$
$\mathrm{Cd} 1-\mathrm{O} 3$	$2.680(2)$	$\mathrm{Si} 1-\mathrm{O} 3$	$1.653(3)$
$\mathrm{S} 1-\mathrm{Si} 1$	$2.0778(15)$		
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 1^{\mathrm{i}}$	$67.32(17)$	$\mathrm{O} 2-\mathrm{Si} 1-\mathrm{O} 1$	$104.68(16)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{S} 1$	$93.38(9)$	$\mathrm{O} 2-\mathrm{Si} 1-\mathrm{O} 3$	$104.89(14)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 1$	$154.88(9)$	$\mathrm{O} 1-\mathrm{Si} 1-\mathrm{O} 3$	$112.24(16)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{i}}$	$109.20(5)$	$\mathrm{O} 2-\mathrm{Si} 1-\mathrm{S} 1$	$115.23(13)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{O} 3$	$69.38(6)$	$\mathrm{O} 1-\mathrm{Si} 1-\mathrm{S} 1$	$114.91(12)$
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$	$176.03(11)$	$\mathrm{O} 3-\mathrm{Si} 1-\mathrm{S} 1$	$104.63(10)$
$\mathrm{Si} 1-\mathrm{S} 1-\mathrm{Cd} 1$	$89.28(5)$		

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.
All H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ (methyl groups) or $0.93 \AA$ (all others) and with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}$ (parent) for methyl H atoms or $1.2 U_{\text {eq }}$ (parent) for all other H atoms.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Becker, B., Radacki, K. \& Wojnowski, W. (1996). J. Organomet. Chem. 521, 39-49.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kropidłowska, A., Chojnacki, J. \& Becker, B. (2006). Polyhedron, 25, 21422148.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171.30.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

metal-organic papers

Wojnowski, W., Becker, B., Walz, L., Peters, K., Peters, E. M. \& von Schnering, H. G. (1992). Polyhedron, 11, 607-612.

Zhang, Z. H., Chin, W. S. \& Vittal, J. J. (2004). J. Phys. Chem. B, 108, 1856918574.

[^0]: © 2006 International Union of Crystallography All rights reserved

